6.2: The Standard Normal Distribution (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    43633
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Z-Scores

    The standard normal distribution is a normal distribution of standardized values called z-scores. A z-score is measured in units of the standard deviation.

    Definition: Z-Score

    If \(X\) is a normally distributed random variable and \(X \sim N(\mu, \sigma)\), then the z-score is:

    \[z = \dfrac{x - \mu}{\sigma} \label{zscore}\]

    The z-score tells you how many standard deviations the value \(x\) is above (to the right of) or below (to the left of) the mean, \(\mu\). Values of \(x\) that are larger than the mean have positive \(z\)-scores, and values of \(x\) that are smaller than the mean have negative \(z\)-scores. If \(x\) equals the mean, then \(x\) has a \(z\)-score of zero. For example, if the mean of a normal distribution is five and the standard deviation is two, the value 11 is three standard deviations above (or to the right of) the mean. The calculation is as follows:

    \[ \begin{align*} x &= \mu + (z)(\sigma) \\[5pt] &= 5 + (3)(2) = 11 \end{align*}\]

    The z-score is three.

    Since the mean for the standard normal distribution is zero and the standard deviation is one, then the transformation in Equation \ref{zscore} produces the distribution \(Z \sim N(0, 1)\). The value \(x\) comes from a normal distribution with mean \(\mu\) and standard deviation \(\sigma\).

    A z-score is measured in units of the standard deviation.

    Example \(\PageIndex{1}\)

    Suppose \(X \sim N(5, 6)\). This says that \(x\) is a normally distributed random variable with mean \(\mu = 5\) and standard deviation \(\sigma = 6\). Suppose \(x = 17\). Then (via Equation \ref{zscore}):

    \[z = \dfrac{x-\mu}{\sigma} = \dfrac{17-5}{6} = 2 \nonumber\]

    This means that \(x = 17\) is two standard deviations (2\(\sigma\)) above or to the right of the mean \(\mu = 5\). The standard deviation is \(\sigma = 6\).

    Notice that: \(5 + (2)(6) = 17\) (The pattern is \(\mu + z \sigma = x\))

    Now suppose \(x = 1\). Then:

    \[z = \dfrac{x-\mu}{\sigma} = \dfrac{1-5}{6} = -0.67 \nonumber\]

    (rounded to two decimal places)

    This means that \(x = 1\) is \(0.67\) standard deviations (\(–0.67\sigma\)) below or to the left of the mean \(\mu = 5\). Notice that: \(5 + (–0.67)(6)\) is approximately equal to one (This has the pattern \(\mu + (–0.67)\sigma = 1\))

    Summarizing, when \(z\) is positive, \(x\) is above or to the right of \(\mu\) and when \(z\) is negative, \(x\) is to the left of or below \(\mu\). Or, when \(z\) is positive, \(x\) is greater than \(\mu\), and when \(z\) is negative \(x\) is less than \(\mu\).

    Exercise \(\PageIndex{1}\)

    What is the \(z\)-score of \(x\), when \(x = 1\) and \(X \sim N(12, 3)\)?

    Answer

    \(z = \dfrac{1-12}{3} \approx -3.67\)

    Example \(\PageIndex{2}\)

    Some doctors believe that a person can lose five pounds, on the average, in a month by reducing his or her fat intake and by exercising consistently. Suppose weight loss has a normal distribution. Let \(X =\) the amount of weight lost(in pounds) by a person in a month. Use a standard deviation of two pounds. \(X \sim N(5, 2)\). Fill in the blanks.

    1. Suppose a person lost ten pounds in a month. The \(z\)-score when \(x = 10\) pounds is \(x = 2.5\) (verify). This \(z\)-score tells you that \(x = 10\) is ________ standard deviations to the ________ (right or left) of the mean _____ (What is the mean?).
    2. Suppose a person gained three pounds (a negative weight loss). Then \(z =\) __________. This \(z\)-score tells you that \(x = -3\) is ________ standard deviations to the __________ (right or left) of the mean.

    Answers

    a. This \(z\)-score tells you that \(x = 10\) is 2.5 standard deviations to the right of the mean five.

    b. Suppose the random variables \(X\) and \(Y\) have the following normal distributions: \(X \sim N(5, 6)\) and \(Y \sim N(2, 1)\). If \(x = 17\), then \(z = 2\). (This was previously shown.) If \(y = 4\), what is \(z\)?

    \[z = \dfrac{y-\mu}{\sigma} = \dfrac{4-2}{1} = 2 \nonumber\]

    where \(\mu = 2\) and \(\sigma = 1\).

    The \(z\)-score for \(y = 4\) is \(z = 2\). This means that four is \(z = 2\) standard deviations to the right of the mean. Therefore, \(x = 17\) and \(y = 4\) are both two (of their own) standard deviations to the right of their respective means.

    The z-score allows us to compare data that are scaled differently. To understand the concept, suppose \(X \sim N(5, 6)\) represents weight gains for one group of people who are trying to gain weight in a six week period and \(Y \sim N(2, 1)\) measures the same weight gain for a second group of people. A negative weight gain would be a weight loss. Since \(x = 17\) and \(y = 4\) are each two standard deviations to the right of their means, they represent the same, standardized weight gain relative to their means.

    Exercise \(\PageIndex{2}\)

    Fill in the blanks.

    Jerome averages 16 points a game with a standard deviation of four points. \(X \sim N(16, 4)\). Suppose Jerome scores ten points in a game. The \(z\)–score when \(x = 10\) is \(-1.5\). This score tells you that \(x = 10\) is _____ standard deviations to the ______(right or left) of the mean______(What is the mean?).

    Answer

    1.5, left, 16

    The Empirical Rule

    If \(X\) is a random variable and has a normal distribution with mean \(\mu\) and standard deviation \(\sigma\), then the Empirical Rule says the following:

    • About 68% of the \(x\) values lie between –1\(\sigma\) and +1\(\sigma\) of the mean \(\mu\) (within one standard deviation of the mean).
    • About 95% of the \(x\) values lie between –2\(\sigma\) and +2\(\sigma\) of the mean \(\mu\) (within two standard deviations of the mean).
    • About 99.7% of the \(x\) values lie between –3\(\sigma\) and +3\(\sigma\) of the mean \(\mu\) (within three standard deviations of the mean). Notice that almost all the \(x\) values lie within three standard deviations of the mean.
    • The \(z\)-scores for +1\(\sigma\) and –1\(\sigma\) are +1 and –1, respectively.
    • The \(z\)-scores for +2\(\sigma\) and –2\(\sigma\) are +2 and –2, respectively.
    • The \(z\)-scores for +3\(\sigma\) and –3\(\sigma\) are +3 and –3 respectively.

    The empirical rule is also known as the 68-95-99.7 rule.

    6.2: The Standard Normal Distribution (2)
    Example \(\PageIndex{3}\)

    The mean height of 15 to 18-year-old males from Chile from 2009 to 2010 was 170 cm with a standard deviation of 6.28 cm. Male heights are known to follow a normal distribution. Let \(X =\) the height of a 15 to 18-year-old male from Chile in 2009 to 2010. Then \(X \sim N(170, 6.28)\).

    1. Suppose a 15 to 18-year-old male from Chile was 168 cm tall from 2009 to 2010. The \(z\)-score when \(x = 168\) cm is \(z =\) _______. This \(z\)-score tells you that \(x = 168\) is ________ standard deviations to the ________ (right or left) of the mean _____ (What is the mean?).
    2. Suppose that the height of a 15 to 18-year-old male from Chile from 2009 to 2010 has a \(z\)-score of \(z = 1.27\). What is the male’s height? The \(z\)-score (\(z = 1.27\)) tells you that the male’s height is ________ standard deviations to the __________ (right or left) of the mean.

    Answers

    1. –0.32, 0.32, left, 170
    2. 177.98, 1.27, right
    Exercise \(\PageIndex{3}\)

    Use the information in Example \(\PageIndex{3}\) to answer the following questions.

    1. Suppose a 15 to 18-year-old male from Chile was 176 cm tall from 2009 to 2010. The \(z\)-score when \(x = 176\) cm is \(z =\) _______. This \(z\)-score tells you that \(x = 176\) cm is ________ standard deviations to the ________ (right or left) of the mean _____ (What is the mean?).
    2. Suppose that the height of a 15 to 18-year-old male from Chile from 2009 to 2010 has a \(z\)-score of \(z = –2\). What is the male’s height? The \(z\)-score (\(z = –2\)) tells you that the male’s height is ________ standard deviations to the __________ (right or left) of the mean.
    Answer

    Solve the equation \(z = \dfrac{x-\mu}{\sigma}\) for \(z\). \(x = \mu+ (z)(\sigma)\)

    \(z = \dfrac{176-170}{6.28}\), This z-score tells you that \(x = 176\) cm is 0.96 standard deviations to the right of the mean 170 cm.

    Answer

    Solve the equation \(z = \dfrac{x-\mu}{\sigma}\) for \(z\). \(x = \mu+ (z)(\sigma)\)

    \(X = 157.44\) cm, The \(z\)-score(\(z = –2\)) tells you that the male’s height is two standard deviations to the left of the mean.

    Example \(\PageIndex{4}\)

    From 1984 to 1985, the mean height of 15 to 18-year-old males from Chile was 172.36 cm, and the standard deviation was 6.34 cm. Let \(Y =\) the height of 15 to 18-year-old males from 1984 to 1985. Then \(Y \sim N(172.36, 6.34)\).

    The mean height of 15 to 18-year-old males from Chile from 2009 to 2010 was 170 cm with a standard deviation of 6.28 cm. Male heights are known to follow a normal distribution. Let \(X =\) the height of a 15 to 18-year-old male from Chile in 2009 to 2010. Then \(X \sim N(170, 6.28)\).

    Find the z-scores for \(x = 160.58\) cm and \(y = 162.85\) cm. Interpret each \(z\)-score. What can you say about \(x = 160.58\) cm and \(y = 162.85\) cm?

    Answer

    • The \(z\)-score (Equation \ref{zscore}) for \(x = 160.58\) is \(z = –1.5\).
    • The \(z\)-score for \(y = 162.85\) is \(z = –1.5\).

    Both \(x = 160.58\) and \(y = 162.85\) deviate the same number of standard deviations from their respective means and in the same direction.

    Exercise \(\PageIndex{4}\)

    In 2012, 1,664,479 students took the SAT exam. The distribution of scores in the verbal section of the SAT had a mean \(\mu = 496\) and a standard deviation \(\sigma = 114\). Let \(X =\) a SAT exam verbal section score in 2012. Then \(X \sim N(496, 114)\).

    Find the \(z\)-scores for \(x_{1} = 325\) and \(x_{2} = 366.21\). Interpret each \(z\)-score. What can you say about \(x_{1} = 325\) and \(x_{2} = 366.21\)?

    Answer

    The z-score (Equation \ref{zscore}) for \(x_{1} = 325\) is \(z_{1} = –1.15\).

    The z-score (Equation \ref{zscore}) for \(x_{2} = 366.21\) is \(z_{2} = –1.14\).

    Student 2 scored closer to the mean than Student 1 and, since they both had negative \(z\)-scores, Student 2 had the better score.

    Example \(\PageIndex{5}\)

    Suppose x has a normal distribution with mean 50 and standard deviation 6.

    • About 68% of the x values lie within one standard deviation of the mean. Therefore, about 68% of the x values lie between –1σ = (–1)(6) = –6 and 1σ = (1)(6) = 6 of the mean 50. The values 50 – 6 = 44 and 50 + 6 = 56 are within one standard deviation from the mean 50. The z-scores are –1 and +1 for 44 and 56, respectively.
    • About 95% of the x values lie within two standard deviations of the mean. Therefore, about 95% of the x values lie between –2σ = (–2)(6) = –12 and 2σ = (2)(6) = 12. The values 50 – 12 = 38 and 50 + 12 = 62 are within two standard deviations from the mean 50. The z-scores are –2 and +2 for 38 and 62, respectively.
    • About 99.7% of the x values lie within three standard deviations of the mean. Therefore, about 99.7% of the x values lie between –3σ = (–3)(6) = –18 and 3σ = (3)(6) = 18 from the mean 50. The values 50 – 18 = 32 and 50 + 18 = 68 are within three standard deviations of the mean 50. The z-scores are –3 and +3 for 32 and 68, respectively.
    Exercise \(\PageIndex{5}\)

    Suppose \(X\) has a normal distribution with mean 25 and standard deviation five. Between what values of \(x\) do 68% of the values lie?

    Answer

    between 20 and 30.

    Example \(\PageIndex{6}\)

    From 1984 to 1985, the mean height of 15 to 18-year-old males from Chile was 172.36 cm, and the standard deviation was 6.34 cm. Let \(Y =\) the height of 15 to 18-year-old males in 1984 to 1985. Then \(Y \sim N(172.36, 6.34)\).

    1. About 68% of the \(y\) values lie between what two values? These values are ________________. The \(z\)-scores are ________________, respectively.
    2. About 95% of the \(y\) values lie between what two values? These values are ________________. The \(z\)-scores are ________________ respectively.
    3. About 99.7% of the \(y\) values lie between what two values? These values are ________________. The \(z\)-scores are ________________, respectively.

    Answer

    1. About 68% of the values lie between 166.02 and 178.7. The \(z\)-scores are –1 and 1.
    2. About 95% of the values lie between 159.68 and 185.04. The \(z\)-scores are –2 and 2.
    3. About 99.7% of the values lie between 153.34 and 191.38. The \(z\)-scores are –3 and 3.
    Exercise \(\PageIndex{6}\)

    The scores on a college entrance exam have an approximate normal distribution with mean, \(\mu = 52\) points and a standard deviation, \(\sigma = 11\) points.

    1. About 68% of the \(y\) values lie between what two values? These values are ________________. The \(z\)-scores are ________________, respectively.
    2. About 95% of the \(y\) values lie between what two values? These values are ________________. The \(z\)-scores are ________________, respectively.
    3. About 99.7% of the \(y\) values lie between what two values? These values are ________________. The \(z\)-scores are ________________, respectively.
    Answer a

    About 68% of the values lie between the values 41 and 63. The \(z\)-scores are –1 and 1, respectively.

    Answer b

    About 95% of the values lie between the values 30 and 74. The \(z\)-scores are –2 and 2, respectively.

    Answer c

    About 99.7% of the values lie between the values 19 and 85. The \(z\)-scores are –3 and 3, respectively.

    Summary

    A \(z\)-score is a standardized value. Its distribution is the standard normal, \(Z \sim N(0,1)\). The mean of the \(z\)-scores is zero and the standard deviation is one. If \(y\) is the z-score for a value \(x\) from the normal distribution \(N(\mu, \sigma)\) then \(z\) tells you how many standard deviations \(x\) is above (greater than) or below (less than) \(\mu\).

    Formula Review

    \(Z \sim N(0, 1)\)

    \(z = a\) standardized value (\(z\)-score)

    mean = 0; standard deviation = 1

    To find the \(K\)th percentile of \(X\) when the \(z\)-scores is known:

    \(k = \mu + (z)\sigma\)

    \(z\)-score: \(z = \dfrac{x-\mu}{\sigma}\)

    \(Z =\) the random variable for z-scores

    \(Z \sim N(0, 1)\)

    Glossary

    Standard Normal Distribution
    a continuous random variable (RV) \(X \sim N(0, 1)\); when \(X\) follows the standard normal distribution, it is often noted as \(Z \sim N(0, 1)\.
    \(z\)-score
    the linear transformation of the form \(z = \dfrac{x-\mu}{\sigma}\); if this transformation is applied to any normal distribution \(X \sim N(\mu, \sigma\) the result is the standard normal distribution \(Z \sim N(0,1)\). If this transformation is applied to any specific value \(x\) of the RV with mean \(\mu\) and standard deviation \(\sigma\), the result is called the \(z\)-score of \(x\). The \(z\)-score allows us to compare data that are normally distributed but scaled differently.

    References

    1. “Blood Pressure of Males and Females.” StatCruch, 2013. Available online at http://www.statcrunch.com/5.0/viewre...reportid=11960 (accessed May 14, 2013).
    2. “The Use of Epidemiological Tools in Conflict-affected populations: Open-access educational resources for policy-makers: Calculation of z-scores.” London School of Hygiene and Tropical Medicine, 2009. Available online at http://conflict.lshtm.ac.uk/page_125.htm (accessed May 14, 2013).
    3. “2012 College-Bound Seniors Total Group Profile Report.” CollegeBoard, 2012. Available online at media.collegeboard.com/digita...Group-2012.pdf (accessed May 14, 2013).
    4. “Digest of Education Statistics: ACT score average and standard deviations by sex and race/ethnicity and percentage of ACT test takers, by selected composite score ranges and planned fields of study: Selected years, 1995 through 2009.” National Center for Education Statistics. Available online at nces.ed.gov/programs/digest/d...s/dt09_147.asp (accessed May 14, 2013).
    5. Data from the San Jose Mercury News.
    6. Data from The World Almanac and Book of Facts.
    7. “List of stadiums by capacity.” Wikipedia. Available online at en.Wikipedia.org/wiki/List_o...ms_by_capacity (accessed May 14, 2013).
    8. Data from the National Basketball Association. Available online at www.nba.com (accessed May 14, 2013).
    6.2: The Standard Normal Distribution (2024)

    FAQs

    What is the standard normal distribution? ›

    The standard normal distribution, also called the z-distribution, is a special normal distribution where the mean is 0 and the standard deviation is 1. Any normal distribution can be standardized by converting its values into z scores. Z scores tell you how many standard deviations from the mean each value lies.

    What is normal normal distribution? ›

    What is normal distribution? A normal distribution is a type of continuous probability distribution in which most data points cluster toward the middle of the range, while the rest taper off symmetrically toward either extreme. The middle of the range is also known as the mean of the distribution.

    What is the 95% normal distribution value? ›

    The 68-95-99 rule

    It says: 68% of the population is within 1 standard deviation of the mean. 95% of the population is within 2 standard deviation of the mean. 99.7% of the population is within 3 standard deviation of the mean.

    What is the standard notation for normal distribution? ›

    The standard normal distribution is N(0,1); i.e., the normal distribution with mean 0 and variance 1. Probabilities for any normal distribution N(µ, σ2 ) can be found from a table for N(0,1). (The table appears at the end of these notes.) To see this, we need a few properties of normal random variables.

    What is an acceptable normal distribution? ›

    Some says for skewness (−1,1) and (−2,2) for kurtosis is an acceptable range for being normally distributed. Some says (−1.96,1.96) for skewness is an acceptable range.

    What is the standard normal distribution value of mean? ›

    The mean for the standard normal distribution is zero, and the standard deviation is one.

    How do I calculate normal distribution? ›

    z = (X – μ) / σ

    where X is a normal random variable, μ is the mean of X, and σ is the standard deviation of X. You can also find the normal distribution formula here. In probability theory, the normal or Gaussian distribution is a very common continuous probability distribution.

    What does the normal distribution value tell us? ›

    What Is a Normal Distribution? Normal distribution, also known as the Gaussian distribution, is a probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean. The normal distribution appears as a "bell curve" when graphed.

    How to test for normal distribution? ›

    If you want to check the normal distribution using a histogram, plot the normal distribution on the histogram of your data and check that the distribution curve of the data approximately matches the normal distribution curve. A better way to do this is to use a quantile-quantile plot, or Q-Q plot for short.

    Do IQ scores have a normal distribution? ›

    IQ scores are normally distributed with a mean of 100 and a standard deviation of 15. About 68% of individuals have IQ scores in the interval 100 ± 1 ( 15 ) = [ 85 , 115 ] . About 95% of individuals have IQ scores in the interval 100 ± 2 ( 15 ) = [ 70 , 130 ] .

    What is 90% in normal distribution? ›

    To capture the central 90%, we must go out 1.645 “standard deviations” on either side of the calculated sample mean. The value 1.645 is the z-score from a standard normal probability distribution that puts an area of 0.90 in the center, an area of 0.05 in the far left tail, and an area of 0.05 in the far right tail.

    What is an example of a normal distribution? ›

    A normal distribution is a common probability distribution . It has a shape often referred to as a "bell curve." Many everyday data sets typically follow a normal distribution: for example, the heights of adult humans, the scores on a test given to a large class, errors in measurements.

    What is normal distribution standard? ›

    The standard normal distribution is a normal distribution with mean μ = 0 and standard deviation σ = 1. The letter Z is often used to denote a random variable that follows this standard normal distribution.

    Why is normal distribution important? ›

    The normal distribution is an important probability distribution in math and statistics because many continuous data in nature and psychology display this bell-shaped curve when compiled and graphed.

    What is 1.25 standard normal distribution? ›

    Since a normal distribution is symmetrical, that means that 50% lies on both sides of the distribution. So, if we have a Z score of 1.25, that means that it is at the 89.44th percentile (39.44+50). It also means that even though the information is not given, we know that 10.56% is in the area beyond our Z score.

    What is the z-value in probability? ›

    The Z-value (or sometimes referred to as Z-score or simply Z) represents the number of standard deviations an observation is from the mean for a set of data. To find the z-score for a particular observation we apply the following formula: Z = ( o b s e r v e d v a l u e − m e a n ) S D.

    What does the z-score represent? ›

    A z-score is an example of a standardized score. A z-score measures how many standard deviations a data point is from the mean in a distribution.

    What is the z-score of 1? ›

    A Z-score of 1.0 would indicate a value that is one standard deviation from the mean. Z-scores may be positive or negative, with a positive value indicating the score is above the mean and a negative score indicating it is below the mean.

    Top Articles
    Michael Schumacher accident: Separating the facts from fiction
    A decade since his life-changing ski accident, the health of Michael Schumacher remains a guarded secret
    Spasa Parish
    Rentals for rent in Maastricht
    159R Bus Schedule Pdf
    Sallisaw Bin Store
    Black Adam Showtimes Near Maya Cinemas Delano
    Espn Transfer Portal Basketball
    Pollen Levels Richmond
    11 Best Sites Like The Chive For Funny Pictures and Memes
    Things to do in Wichita Falls on weekends 12-15 September
    Craigslist Pets Huntsville Alabama
    Paulette Goddard | American Actress, Modern Times, Charlie Chaplin
    What's the Difference Between Halal and Haram Meat & Food?
    R/Skinwalker
    Rugged Gentleman Barber Shop Martinsburg Wv
    Jennifer Lenzini Leaving Ktiv
    Justified - Streams, Episodenguide und News zur Serie
    Epay. Medstarhealth.org
    Olde Kegg Bar & Grill Portage Menu
    Cubilabras
    Half Inning In Which The Home Team Bats Crossword
    Amazing Lash Bay Colony
    Juego Friv Poki
    Dirt Devil Ud70181 Parts Diagram
    Truist Bank Open Saturday
    Water Leaks in Your Car When It Rains? Common Causes & Fixes
    What’s Closing at Disney World? A Complete Guide
    New from Simply So Good - Cherry Apricot Slab Pie
    Drys Pharmacy
    modelo julia - PLAYBOARD
    Poker News Views Gossip
    Abby's Caribbean Cafe
    Joanna Gaines Reveals Who Bought the 'Fixer Upper' Lake House and Her Favorite Features of the Milestone Project
    Tri-State Dog Racing Results
    Navy Qrs Supervisor Answers
    Trade Chart Dave Richard
    Lincoln Financial Field Section 110
    Free Stuff Craigslist Roanoke Va
    Stellaris Resolution
    Wi Dept Of Regulation & Licensing
    Pick N Pull Near Me [Locator Map + Guide + FAQ]
    Crystal Westbrooks Nipple
    Ice Hockey Dboard
    Über 60 Prozent Rabatt auf E-Bikes: Aldi reduziert sämtliche Pedelecs stark im Preis - nur noch für kurze Zeit
    Wie blocke ich einen Bot aus Boardman/USA - sellerforum.de
    Infinity Pool Showtimes Near Maya Cinemas Bakersfield
    Dermpathdiagnostics Com Pay Invoice
    How To Use Price Chopper Points At Quiktrip
    Maria Butina Bikini
    Busted Newspaper Zapata Tx
    Latest Posts
    Article information

    Author: Kerri Lueilwitz

    Last Updated:

    Views: 6133

    Rating: 4.7 / 5 (47 voted)

    Reviews: 86% of readers found this page helpful

    Author information

    Name: Kerri Lueilwitz

    Birthday: 1992-10-31

    Address: Suite 878 3699 Chantelle Roads, Colebury, NC 68599

    Phone: +6111989609516

    Job: Chief Farming Manager

    Hobby: Mycology, Stone skipping, Dowsing, Whittling, Taxidermy, Sand art, Roller skating

    Introduction: My name is Kerri Lueilwitz, I am a courageous, gentle, quaint, thankful, outstanding, brave, vast person who loves writing and wants to share my knowledge and understanding with you.